Polynomial time recognition of unit circular-arc graphs

نویسندگان

  • Guillermo Durán
  • Agustín Gravano
  • Ross M. McConnell
  • Jeremy P. Spinrad
  • Alan Tucker
چکیده

We present an efficient algorithm for recognizing unit circular-arc (UCA) graphs, based on a characterization theorem for UCA graphs proved by Tucker in the seventies. Given a proper circular-arc (PCA) graph G, the algorithm starts from a PCA model for G, removes all its circle-covering pairs of arcs and determines whether G is a UCA graph. We also give an O(N) time bound for Tucker’s 3/2-approximation algorithm for coloring circular-arc graphs with N vertices, when a circular-arc model is given.  2004 Elsevier Inc. All rights reserved. * Corresponding author. Fax: (56) (2) 689-7895. E-mail addresses: [email protected] (G. Durán), [email protected] (A. Gravano), [email protected] (R.M. McConnell), [email protected] (J. Spinrad), [email protected] (A. Tucker). 1 Partially supported by FONDECyT Grant 1030498 and Millennium Science Nucleus “Complex Engineering Systems”, Chile and “International Scientific Cooperation Program CONICyT/SETCIP”, Chile–Argentina. 2 Partially supported by UBACyT Grant X127, Argentina. 0196-6774/$ – see front matter  2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgor.2004.08.003 ARTICLE IN PRESS S0196-6774(04)00146-4/FLA AID:1401 Vol.•••(•••) [DTD5] P.2 (1-12) YJAGM:m1 v 1.28 Prn:11/10/2004; 14:22 yjagm1401 by:IS p. 2 2 G. Durán et al. / Journal of Algorithms ••• (••••) •••–•••

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden structure characterization of circular-arc graphs and a certifying recognition algorithm

A circular-arc graph is the intersection graph of arcs of a circle. It is a well-studied graph model with numerous natural applications. A certifying algorithm is an algorithm that outputs a certificate, along with its answer (be it positive or negative), where the certificate can be used to easily justify the given answer. While the recognition of circular-arc graphs has been known to be polyn...

متن کامل

Recognition of circular-arc graphs and some subclasses

In this work we present three new recognition algorithms for circular-arc graphs and for two subclasses of this graph class. We give a linear-time recognition algorithm for circular-arc graphs based on the algorithm of Eschen and Spinrad [ES93, Esc97]. Our algorithm is simpler than the earlier linear-time recognition algorithm of McConnell [McC03], which is the only linear time recognition algo...

متن کامل

A Simple Linear Time Algorithm for the Isomorphism Problem on Proper Circular-Arc Graphs

A circular-arc modelM = (C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other then M is a proper circular-arc model, and if some point of C is not covered by any arc then M is an interval model. A (proper) (interval) circulararc graph is the intersection graph of a (proper) (interval) circular-arc model. Circular-arc graphs and their subclasses have ...

متن کامل

Characterizations and recognition of circular-arc graphs and subclasses: A survey

Circular graphs are intersection graphs of arcs on a circle. These graphs are reported to have been studied since 1964, and they have been receiving considerable attention since a series of papers by Tucker in the 1970s. Various subclasses of circular-arc graphs have also been studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and co-bip...

متن کامل

Proper Helly Circular-Arc Graphs

A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other then M is a proper circular-arc model, if every arc has the same length then M is a unit circular-arc model and if A satisfies the Helly Property then M is a Helly circular-arc model. A (proper) (unit) (Helly) circular-arc graph is the intersection graph of the arcs of a (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Algorithms

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2006